Publication: Speech emotion recognition and depression prediction using deep neural networks
dc.contributor.affiliation | #PLACEHOLDER_PARENT_METADATA_VALUE# | en_US |
dc.contributor.author | AlGhifari, Muhammad Fahreza | en_US |
dc.contributor.supervisor | Teddy Surya Gunawan, Ph.D | en_US |
dc.contributor.supervisor | Mimi Aminah Wan Nordin, Ph.D | en_US |
dc.contributor.supervisor | Nik Nur Wahidah Nik Hashim, Ph.D | en_US |
dc.date.accessioned | 2024-10-08T03:18:27Z | |
dc.date.available | 2024-10-08T03:18:27Z | |
dc.date.issued | 2021 | |
dc.description.abstract | Speech signals contain ample information from which computers can gain insight into the user's state, including emotion recognition and depression prediction. The applications are numerous, from customer service to suicide prevention due to depression. In this research, we propose several deep-learning-based methodologies to detect emotion, as well as depression. Deep neural networks variations such as deep feedforward networks and convolutional networks were used. The deep learning model training, multi-languages emotion and depression database have been utilized, using well-known databases such as the Berlin Emotion Database and DAIC-WOZ Depression Dataset. For speech emotion recognition, the algorithm yields an accuracy of 80.5% across 4 languages, English, German, French and Italian. For depression detection, the current algorithm obtains an accuracy of 60.1% tested with the DAIC-WOZ dataset. This research has also created the Sorrow Analysis Dataset – an English depression audio dataset that contains 64 individuals samples of depressed and not-depressed. Further testing achieved an average accuracy of 97% with 5-fold validation using 1-dimensional convolutional networks. Finally, a prototype currently in development with Skymind Xpress.ai is presented, outlining the design and possible applications in the real world. It has been shown that the model is capable of performing both training and inference on a Raspberry Pi 3B+. | en_US |
dc.description.abstractarabic | تحتوي إشارات الكلام على معلومات وافرة يمكن لأجهزة الكمبيوتر من خلالها اكتساب نظرة ثاقبة على حالة المستخدم مثل معرفة المشاعر أو التنبؤ بحالات الاكتئاب. التطبيقات الممكنة لهذا المجال متعددة، يمكن أن تدرج من عملاء خدمة الزبائن إلى منع حالات الإنتحار الناتجة عن الإكتئاب. في هذا البحث، تم تقديم عدة منهجيات بالإعتماد على التعلم العميق لكشف المشاعر بالإضافة للإكتئاب. عدد من شبكات التعلم العميق مثل شبكات الإدخال المباشر و شبكات المسح الإلتفافي استخدمت في هذا البحث. لتدريب شبكة التعلم العميق، تم استخدام قواعد بيانات متعددة اللغات عن المشاعر و الإكتئاب، منها قواعد البيانات العروفة Berlin Emotion Database و DAIC-WOZ Depression Dataset. للتعرف على عاطفة الكلام ، الخوارزمية المطورة انتجت دقة تصل إلى 80.5٪ عبر 4 لغات ، الإنجليزية ، الألمانية ، الفرنسية والإيطالية. بالنسبة لاكتشاف الاكتئاب ، تحصل الخوارزمية الحالية على دقة تبلغ 60.1٪ تم اختبارها باستخدام مجموعة بيانات DAIC-WOZ. وقد أنشأ هذا البحث أيضًا مجموعة بيانات تحليل الحزن - وهي مجموعة بيانات صوتية باللغة الإنجليزية للاكتئاب تحتوي على عينات من الاكتئاب وغير المكتئب من 64 فردًا. حققت الاختبارات الإضافية متوسط دقة بنسبة 97 في المائة مع تحقق 5 أضعاف باستخدام شبكة تلافيفية أحادية البعد. أخيرًا ، يتم تقديم نموذج أولي قيد التطوير حاليًا مع Skymind Xpress.ai ، يوضح التصميم بالإضافة إلى التطبيقات الممكنة في العالم الحقيقي. الشكبة المطورة أظهرت إمكانية تدربيها و تشغيلها على وحدة Raspberry Pi 3B. | en_US |
dc.description.callnumber | t TK 7882 S65 G423S 2021 | en_US |
dc.description.identifier | Thesis : Speech emotion recognition and depression prediction using deep neural networks / by Muhammad Fahreza AlGhifari | en_US |
dc.description.identity | t11100437191MuhammadFahrezaAlGhifari | en_US |
dc.description.kulliyah | Kulliyyah of Engineering | en_US |
dc.description.notes | Thesis (MSCIE)--International Islamic University Malaysia, 2021. | en_US |
dc.description.physicaldescription | xv, 103 leaves : colour illustrations ; 30cm. | en_US |
dc.description.programme | Master of Computing (Computer Science and Information Technology) | en_US |
dc.identifier.uri | https://studentrepo.iium.edu.my/handle/123456789/7139 | |
dc.language.iso | en | en_US |
dc.publisher | Kuala Lumpur : Kulliyyah of Engineering, International Islamic University Malaysia, 2021 | en_US |
dc.subject.lcsh | Speech processing systems | en_US |
dc.subject.lcsh | Signal processing -- Digital techniques | en_US |
dc.subject.lcsh | Neural networks (Computer science) | en_US |
dc.title | Speech emotion recognition and depression prediction using deep neural networks | en_US |
dc.type | Master Thesis | en_US |
dspace.entity.type | Publication |
Files
Original bundle
1 - 2 of 2
Loading...
- Name:
- t11100437191MuhammadFahrezaAlGhifari_24.pdf
- Size:
- 355.6 KB
- Format:
- Adobe Portable Document Format
- Description:
- 24 pages file
Loading...
- Name:
- t11100437191MuhammadFahrezaAlGhifari_SEC.pdf
- Size:
- 3.13 MB
- Format:
- Adobe Portable Document Format
- Description:
- Full text secured file
License bundle
1 - 1 of 1