Repository logo
  • English
  • Deutsch
  • Español
  • Français
Log In
New user? Click here to register.
  1. Home
  2. Browse by Author

Browsing by Author "Zainab binti Mohamad Ashari"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Some of the metrics are blocked by your 
    consent settings
    Publication
    Design and modeling of a clock data recovery (CDR) circuit
    (Kuala Lumpur: International Islamic University Malaysia, 2013, 2013)
    Zainab binti Mohamad Ashari
    ;
    Clock data recovery (CDR) circuits are in high demand due to development in communication technology such as improvements in transmit/receive processing and GHz transfer bandwidths via wired and wireless media. Large bandwidth data with high transfer rates encounter several major problems at the reception. Electrical signals are easily distorted with large bandwidth data when transmitted at high speeds. Existence of noise will cause disturbance or undesired signals at the output of the system. Minimizing the effects of jitter in CDR system is important to protect the signal from disturbance and to maintain low phase noise. A 5 Gbps clock data recovery circuit using PLL approach is proposed in this work. Hardware Description language, Verilog-AMS has been implemented as a modeling language for CDR using SMASH Dolphin Integrated software. The architecture of the proposed PLL CDR circuits incorporates a phase detector, RLC low-pass filter, voltage-controlled oscillator, and divider. Evaluation of the CDR performance is based on the design, frequency, transfer rate, supply voltage, and phase noise. The proposed circuit has a simple configuration powered using low supply of 1.0 V and operates in high speed of 5 Gbps. The phase noise performance is measure using four different offsets. Less phase noise of -130.29 dBc/Hz is generated without jitter added on it. To simulate jitter from 1 MHz to 100 GHz a pulse is added in each block of the CDR circuit and the circuit's performance is evaluated. CDR with jitter from 10 GHz up to 100 GHz at VCO produces the highest phase noise at the output port of -125.10 dBc/Hz. The PLL-based CDR circuit is affected when jitter pulses is added at the VCO. The proposed PLL-based CDR circuit is suitable for PCIe application with 5 Gbps transfer rate, low supply voltage, and has low phase noise.
      4

This site contains copyrighted unpublished research owned by International Islamic University Malaysia (IIUM) and(or) the owner of the research. No part of any material contained in or derived from any unpublished research may be used without written permission of the copyright holders or due acknowledgement.

Contact:
  • Dar al-Hikmah Library
    International Islamic University Malaysia (IIUM)
    P.O Box 10, 50728
    Kuala Lumpur
  • +603-64214829/4813
  • studentrepo@iium.edu.my
Follow Us:
Copyright © 2024: Dar al-Hikmah Library, IIUM
by CDSOL