Repository logo
  • English
  • Deutsch
  • Español
  • Français
Log In
New user? Click here to register.
  1. Home
  2. Browse by Author

Browsing by Author "Nurazleen Abdul Majid"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Some of the metrics are blocked by your 
    consent settings
    Publication
    Convective flow of micropolar fluid over a flat surface of another quiescent fluid
    (Kuantan, Pahang : Kulliyyah of Science, International Islamic University Malaysia, 2021, 2021)
    Nurazleen Abdul Majid
    ;
    ;
    Nurul Farahain Mohammad, Ph.D
    ;
    Nur Zatul Akmar Hamzah, Ph.D
    Micropolar fluid is well known due to numerous applications such as paint, blood, liquid crystal, silicon oil and human fluids. This fluid can be defined as a fluid that contained microstructure and capable to solve fluid phenomena involving microstructure that cannot be explained by classical Navier- Stokes equation. In practical, many situations are involving two fluids with difference density such as sea water intrusion, air flow on top of water and oil spill over water occur. Despite the significance, the literature produced are still limited. Therefore, this thesis is intended to fill the research gap. Consider a lighter density of micropolar fluid is impinging orthogonally on a stretching surface of another heavier density of micropolar fluid. To solve this problem, system of dimensionless governing equations which consists of continuity, momentum, angular momentum and energy undergo scaling analysis to become dimensionless system of governing equations. Later, the similarity transformation is used to obtain the system of nonlinear ordinary differential equations and solved using shooting technique with Runge - Kutta - Gill method. The algorithm is implemented in Jupyter Notebook using Python 3 language. It is found that the result is in very good agreement with the previous work. The numerical results acquired are velocity, microrotation, temperature, skin friction and Nusselt number. The results show that stretching surface enhances the velocity and microrotation of micropolar fluid for both upper and lower fluids. It is also found that, lower fluid has a greater boundary layer thickness compared to upper fluid.
      5  10

This site contains copyrighted unpublished research owned by International Islamic University Malaysia (IIUM) and(or) the owner of the research. No part of any material contained in or derived from any unpublished research may be used without written permission of the copyright holders or due acknowledgement.

Contact:
  • Dar al-Hikmah Library
    International Islamic University Malaysia (IIUM)
    P.O Box 10, 50728
    Kuala Lumpur
  • +603-64214829/4813
  • studentrepo@iium.edu.my
Follow Us:
Copyright © 2024: Dar al-Hikmah Library, IIUM
by CDSOL