Repository logo
  • English
  • Deutsch
  • Español
  • Français
Log In
New user? Click here to register.
  1. Home
  2. Browse by Author

Browsing by Author "Noor Azlyn Ab Ghafar"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Some of the metrics are blocked by your 
    consent settings
    Publication
    Empirical study of muscle fatigue for driver’s ergonomic analysis during prolonged driving
    (Kuala Lumpur : Kulliyyah of Engineering, International Islamic University Malaysia, 2023, 2023)
    Noor Azlyn Ab Ghafar
    ;
    ;
    Nur Liyana Azmi, Ph.D
    ;
    Khairul Affendy Md Nor, Ph.D
    ;
    Nur Hidayati Diyana Nordin, Ph.D
    Driving has become essential in transporting people from one place to another. However, prolonged driving could cause muscle fatigue, leading to drowsiness and microsleep. Electromyography (EMG) is an important type of electro-psychological signal that is used to measure electrical activity in muscles. This work classifies and predicts muscle fatigue from trapezius muscle of 10 healthy subjects. The EMG signals and the time when muscle fatigue was experienced by the subjects were recorded. The mean frequency and median frequency of the EMG signals were extracted. For classification of muscle fatigue in non-fatigue and fatigue condition, six machine learning models were used: Logistic Regression, Support Vector Machine, Naïve Bayes, k-nearest Neighbour, Decision Tree and Random Forest. From the value of median frequency and slope coefficient of median frequency, mathematical model was developed with respect to driver’s physical factors. The results show that both the median and mean frequency are lower when fatigue conditions exist. In term of the classification performance, the highest accuracy for classifying muscle fatigue due to prolonged driving was obtained by the Random Forest classifier with 85.00%, using both the median and mean frequency of the EMG signals. This method of using the mean and median frequency will be useful in classifying driver’s non-fatigue and fatigue conditions and predict muscle fatigue during prolonged driving. The significant factor influencing muscle fatigue of the driver was Body Mass Index (BMI). This study successfully developed mathematical model of second order polynomial of muscle fatigue and BMI (p<0.05 and the R2 = 0.85). The model was successfully validated where the residual errors compared between predicted values and actual values were less than 10%.
      17  43

This site contains copyrighted unpublished research owned by International Islamic University Malaysia (IIUM) and(or) the owner of the research. No part of any material contained in or derived from any unpublished research may be used without written permission of the copyright holders or due acknowledgement.

Contact:
  • Dar al-Hikmah Library
    International Islamic University Malaysia (IIUM)
    P.O Box 10, 50728
    Kuala Lumpur
  • +603-64214829/4813
  • studentrepo@iium.edu.my
Follow Us:
Copyright © 2024: Dar al-Hikmah Library, IIUM
by CDSOL