• English
  • Deutsch
  • Español
  • Français
Log In
  1. Home
  2. Browse by Author

Browsing by Author "Naing, Wai Yan Nyein"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Some of the metrics are blocked by your 
    consent settings
    Publication
    Automatic pulmonary nodule detection from radiography using histograms of oriented gradients descriptors
    (Kuala Lumpur : International Islamic University Malaysia, 2015, 2015)
    Naing, Wai Yan Nyein
    ;
    A chest X-ray examination is a painless, non-invasive, and cost effective medical examination performed at present day. A pulmonary nodule is a small round lesion or mass in the lungs which can be indicative of an infection or a neoplasm. Chest X-rays can be used to diagnose pulmonary nodules. State-of-the-art automatic pulmonary nodule detection techniques are agonized by the problems posed by noise, local-global feature dilemma, and the bias-and-variance dilemma. To evade these problems, this project proposes a three-layered framework to perform automatic diagnosis of pulmonary nodules. The first layer performs hybrid Haar-wavelet based image enhancement and contour-based lung field segmentation. The second layer extracts histogram of oriented gradient descriptors from a pre-processed X-ray image and compresses the high-dimensional descriptors onto a low dimensional manifold using codec manifold neural network. Finally, the third layer classifies whether the X-ray contains any signs of nodules using an ensemble of partial decision trees. Experiments have been carried out on three X-ray datasets. The proposed system was found to outperform the state-of-the-art systems The results demonstrate the efficacy of the proposed nodule detection framework. The proposed pulmonary nodule detection can be integrated with the existing X-ray equipment in hospitals in order to perform rapid diagnosis.

This site contains copyrighted unpublished research owned by International Islamic University Malaysia (IIUM) and(or) the owner of the research. No part of any material contained in or derived from any unpublished research may be used without written permission of the copyright holders or due acknowledgement.

Contact:
  • Dar al-Hikmah Library
    International Islamic University Malaysia (IIUM)
    P.O Box 10, 50728
    Kuala Lumpur
  • +603-64214829/4813
  • studentrepo@iium.edu.my
Follow Us:
Copyright © 2024: Dar al-Hikmah Library, IIUM
by CDSOL