Repository logo
  • English
  • Deutsch
  • Español
  • Français
Log In
New user? Click here to register.
  1. Home
  2. Browse by Author

Browsing by Author "AlGhifari, Muhammad Fahreza"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Some of the metrics are blocked by your 
    consent settings
    Publication
    Speech emotion recognition and depression prediction using deep neural networks
    (Kuala Lumpur : Kulliyyah of Engineering, International Islamic University Malaysia, 2021, 2021)
    AlGhifari, Muhammad Fahreza
    ;
    ;
    Teddy Surya Gunawan, Ph.D
    ;
    Mimi Aminah Wan Nordin, Ph.D
    ;
    Nik Nur Wahidah Nik Hashim, Ph.D
    Speech signals contain ample information from which computers can gain insight into the user's state, including emotion recognition and depression prediction. The applications are numerous, from customer service to suicide prevention due to depression. In this research, we propose several deep-learning-based methodologies to detect emotion, as well as depression. Deep neural networks variations such as deep feedforward networks and convolutional networks were used. The deep learning model training, multi-languages emotion and depression database have been utilized, using well-known databases such as the Berlin Emotion Database and DAIC-WOZ Depression Dataset. For speech emotion recognition, the algorithm yields an accuracy of 80.5% across 4 languages, English, German, French and Italian. For depression detection, the current algorithm obtains an accuracy of 60.1% tested with the DAIC-WOZ dataset. This research has also created the Sorrow Analysis Dataset – an English depression audio dataset that contains 64 individuals samples of depressed and not-depressed. Further testing achieved an average accuracy of 97% with 5-fold validation using 1-dimensional convolutional networks. Finally, a prototype currently in development with Skymind Xpress.ai is presented, outlining the design and possible applications in the real world. It has been shown that the model is capable of performing both training and inference on a Raspberry Pi 3B+.

This site contains copyrighted unpublished research owned by International Islamic University Malaysia (IIUM) and(or) the owner of the research. No part of any material contained in or derived from any unpublished research may be used without written permission of the copyright holders or due acknowledgement.

Contact:
  • Dar al-Hikmah Library
    International Islamic University Malaysia (IIUM)
    P.O Box 10, 50728
    Kuala Lumpur
  • +603-64214829/4813
  • studentrepo@iium.edu.my
Follow Us:
Copyright © 2024: Dar al-Hikmah Library, IIUM
by CDSOL