EFFECTS OF OPENING TO WALL RATIO (OWR) ON INDOOR THERMAL COMFORT OF PRAYING HALL IN URBAN MOSQUE, KUALA LUMPUR

BY

FAUZIAH HANUM BINTI ABDULLAH

A thesis submitted in fulfilment of the requirement for the degree of Master of Science (Built Environment)

Kulliyyah of Architecture and Environmental Design
International Islamic University Malaysia

JANUARY 2019
ABSTRACT

Opening design and Opening to Wall Ratio (OWR) have significant effects on the thermal comfort level of a building. The design of façade openings in the mosque usually focuses on aesthetic consideration as opposed to work as a mechanism to control indoor thermal comfort. Nowadays, the majority of the mosques improve the indoor thermal comfort by installing air-conditioning systems. The mosques are primarily used daily at prayer times including Friday prayer. The usage of air-conditioning increases the energy consumption and electricity cost since the mosque deals with intermittent occupancy. Most of that time, the mosque is unoccupied. Therefore, the usage of air-conditioning systems for thermal comfort incur the unnecessary increase in energy usage and cost. Literature review in this research focuses on urban mosque, façade design and thermal comfort. The definition of urban mosque and façade openings identified in this research is significant to identify the typology and criteria of OWR of urban mosque. Moreover, the research uses a quantitative approach by means of Urban Mosque Façade Design (UMFD) based on OWR Inventory and computer simulation on thermal analysis of air temperature. The UMFD-OWR inventory is significant to determine the configurations of OWR of UMFD for thermal analysis, while computer simulation is used to investigate the effects of OWR on indoor thermal comfort in praying hall. The term opening adopted in this research are operable doors, fixed and operable windows and opening such as arch, void and etc. The OWR also focuses on middle section of the façade form of both North-West Façade (NWF) and South-West Façade (SEF). The final samples selected for thermal analysis are OWR M1, OWR M2, OWR M3 and OWR M4 on UM model for thermal simulation. The highest opening ratio is OWR M2 and the lowest is Base Case Model (OWR BM) which acts as a reference and comparison between the other models. All the models are simulated in ECOTECT and analysed based on Hourly Temperature (HT), Annual Temperature Distribution (ATD) and Passive Adaptivity Index (PAI). The research found that the indoor temperature for HT recorded in ECOTECT is within the comfort range for naturally ventilated building (23.6°C -30.7°C) during Subuh and Isya’ on the hottest day, and Subuh, Maghrib and Isya on the coolest day. OWR BM (lowest opening ratio on UMFD) recorded highest comfort percentage (ATD) and better PAI compared with others models. All the findings on thermal analysis in ECOTECT showed that the variations of opening ratio influenced the heat gain through radiation and internal load (number of occupancies) and heat loss through the outdoor air movement (cross ventilation and stack effect). The comparison on OWR M2 between ECOTECT and IES-VE, IES-VE predicted lower indoor temperature reading in the praying hall. The accuracy of the results can be further investigated through field measurement in further research. Thus, further research is also encouraged to explore more on façade design strategies without specific on certain design (i.e. opening) in reducing the indoor temperatures in an urban mosque in order to fulfil the indoor design conditions.
خلاصة البحث

إن تصميم الفتحات وفتحة الجدار (OWR) لهما تأثير كبير في مستوى الراحة الحرارية للمبنى. عند ما يرتبط تصميم فتحات الواجهة في المسجد على النظر العملي بدلاً من العمل كآلية للتحكم في الراحة الحرارية الداخلية في الوقت الحاضر، تعمل غالبية المساجد على تحقيق الراحة الحرارية الداخلية من خلال تكبير أنماط كتيب الهواء. تستخدم المساجد بشكل أساسي في أوقات الصلاة بما في ذلك صلاة الجمعة، يزيد استخدام مكيف الهواء من استهلاك الطاقة، وتكلفة الكهرباء، حيث يتعامل المسجد مع إشغالに行く معظم ذلك الوقت، المسجد غير مأهول. ولذلك؛ فإن استخدام أنظمة كتيب الهواء لرنا الراحة الحرارية يتحمل زيادة غير ضرورية في استكشاف الطاقة وتكلفة الكهرباء.

تعتبر المراجعة الأدبية في هذا البحث على المسجد الحضري وتصميم الواجهة والراحة الحرارية. إن تعريف المسجد المدني وفتحات الواجهة التي تم تحديدها في هذا البحث مهمًا لتحديد نوع OWR لمصلحة الحضري. علاوة على ذلك، يستخدم البحث منهجياً يكون عن طريق تصميم واحة المسجد الحضري (UMFD) استناداً إلى مخزون OWR، ومحاكاة الكمبيوتر على تحلي الوراري. تركز المراجعة الأدبية في هذا البحث على المسجد الحضري وتصميم الواجهة والراحة الحرارية.

إن تعريف المسجد المدني وفتحات الواجهة التي تم تحديدها في هذا البحث مهمًا لتحديد نوع OWR لمصلحة الحضري. علاوة على ذلك، يستخدم البحث منهجياً يكون عن طريق تصميم واحة المسجد الحضري (UMFD) استناداً إلى مخزون OWR، ومحاكاة الكمبيوتر على تحلي الوراري. تركز المراجعة الأدبية في هذا البحث على المسجد الحضري وتصميم الواجهة والراحة الحرارية.

إن تعريف المسجد المدني وفتحات الواجهة التي تم تحديدها في هذا البحث مهمًا لتحديد نوع OWR لمصلحة الحضري. علاوة على ذلك، يستخدم البحث منهجياً يكون عن طريق تصميم واحة المسجد الحضري (UMFD) استناداً إلى مخزون OWR، ومحاكاة الكمبيوتر على تحلي الوراري. تركز المراجعة الأدبية في هذا البحث على المسجد الحضري وتصميم الواجهة والراحة الحرارية.

إن تعريف المسجد المدني وفتحات الواجهة التي تم تحديدها في هذا البحث مهمًا لتحديد نوع OWR لمصلحة الحضري. علاوة على ذلك، يستخدم البحث منهجياً يكون عن طريق تصميم واحة المسجد الحضري (UMFD) استناداً إلى مخزون OWR، ومحاكاة الكمبيوتر على تحلي الوراري. تركز المراجعة الأدبية في هذا البحث على المسجد الحضري وتصميم الواجهة والراحة الحرارية.

إن تعريف المسجد المدني وفتحات الواجهة التي تم تحديدها في هذا البحث مهمًا لتحديد نوع OWR لمصلحة الحضري. علاوة على ذلك، يستخدم البحث منهجياً يكون عن طريق تصميم واحة المسجد الحضري (UMFD) استناداً إلى مخزون OWR، ومحاكاة الكمبيوتر على تحلي الوراري. تركز المراجعة الأدبية في هذا البحث على المسجد الحضري وتصميم الواجهة والراحة الحرارية.

إن تعريف المسجد المدني وفتحات الواجهة التي تم تحديدها في هذا البحث مهمًا لتحديد نوع OWR لمصلحة الحضري. علاوة على ذلك، يستخدم البحث منهجياً يكون عن طريق تصميم واحة المسجد الحضري (UMFD) استناداً إلى مخزون OWR، ومحاكاة الكمبيوتر على تحلي الوراري. تركز المراجعة الأدبية في هذا البحث على المسجد الحضري وتصميم الواجهة والراحة الحرارية.

إن تعريف المسجد المدني وفتحات الواجهة التي تم تحديدها في هذا البحث مهمًا لتحديد نوع OWR لمصلحة الحضري. علاوة على ذلك، يستخدم البحث منهجياً يكون عن طريق تصميم واحة المسجد الحضري (UMFD) استناداً إلى مخزون OWR، ومحاكاة الكمبيوتر على تحلي الوراري. تركز المراجعة الأدبية في هذا البحث على المسجد الحضري وتصميم الواجهة والراحة الحرارية.

إن تعريف المسجد المدني وفتحات الواجهة التي تم تحديدها في هذا البحث مهمًا لتحديد نوع OWR لمصلحة الحضري. علاوة على ذلك، يستخدم البحث منهجياً يكون عن طريق تصميم واحة المسجد الحضري (UMFD) استناداً إلى مخزون OWR، ومحاكاة الكمبيوتر على تحلي الوراري. تركز المراجعة الأدبية في هذا البحث على المسجد الحضري وتصميم الواجهة والراحة الحرارية.

إن تعريف المسجد المدني وفتحات الواجهة التي تم تحديد...
I certify that I have supervised and read this study and that in my opinion, it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a thesis for the degree of Master of Science (Built Environment).

Noor Hanita Abdul Majid.
Supervisor

Zuraini Denan.
Co-Supervisor

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a thesis for the degree of Master of Science (Built Environment).

Srazali Aripin
Internal Examiner

Sabarinah Sheikh Ahmad
External Examiner

This thesis was submitted to the Department of Architecture and is accepted as a fulfilment of the requirement for the degree of Master of Science (Built Environment).

Srazali Aripin.
Head, Department of Architecture

This thesis was submitted to the Kulliyyah of Architecture and Environmental Design and is accepted as a fulfilment of the requirement for the degree of Master of Science (Built Environment).

Abdul Razak Sapian
Dean, Kulliyyah of Architecture and Environmental Design
DECLARATION

I hereby declare that this thesis is the result of my own investigations, except where otherwise stated. I also declare that it has not been previously or concurrently submitted as a whole for any other degrees at IIUM or other institutions.

Fauziah Hanum Binti Abdullah

Signature .. Date ..
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

DECLARATION OF COPYRIGHT AND AFFIRMATION OF FAIR USE OF UNPUBLISHED RESEARCH

EFFECT OF OPENING TO WALL RATIO (OWR) ON INFOOR THERMAL COMFORT OF PRAYING HALL IN URBAN MOSQUE, KUALA LUMPUR

I declare that the copyright holders of this thesis are jointly owned by the student and IIUM.

Copyright © 2018 Fauziah Hanum Binti Abdullah and International Islamic University Malaysia. All rights reserved.

No part of this unpublished research may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the copyright holder except as provided below

1. Any material contained in or derived from this unpublished research may be used by others in their writing with due acknowledgement.

2. IIUM or its library will have the right to make and transmit copies (print or electronic) for institutional and academic purposes.

3. The IIUM library will have the right to make, store in a retrieved system and supply copies of this unpublished research if requested by other universities and research libraries.

By signing this form, I acknowledged that I have read and understand the IIUM Intellectual Property Right and Commercialization policy.

Affirmed by Fauziah Hanum Binti Abdullah.

... ...
Signature Date
ACKNOWLEDGEMENTS

In the name of Allah, Most Gracious, Most Merciful. All praise is to Allah whose blessings and guidance had given me the inspiration to give full commitment on this journey and use optimum of my strengths to complete this research with good health and condition. Many obstacles were encountered during the process of completing the research but each of them has enhanced my knowledge in my field.

First and foremost, I am most indebted to my supervisor Dr. Noor Hanita Abdul Majid, whose enduring disposition, kindness, promptitude, thoroughness and friendship have facilitated the successful completion of my research. I put on memories and appreciations of her detailed comments, useful suggestions and inspiring queries which have considerably improved this thesis. Despite her commitments, she took time to listen and attend to me whenever requested. The moral support she extended to me is in no doubt a boost that helped in building and writing the draft of this research work. I am also grateful to my co-supervisor, Dr. Zuraini Denan who listen to my blabbering, give attentive suggestions and understand my difficulties in completing this research. May His bless upon both of my beloved supervisors.

There are also many lecturers in Department of Architecture, KAED, who have been of great help to this work, and I would like to thank them all without mentioning their names for fear of leaving out any. Thanks to my colleagues of Master of Science Built Environments, KAED, friends for their kind help during the journey of the thesis.

My deepest gratitude to the most important person in my life, which is my lovely and beloved parents Abdullah Endok and Azizah Mohammad because always giving me an inspiration, secret spiritual blessing and moral support during my studies. Without your pray, maybe I would not be here today. May ALLAH bless your spirit and sacrifice along your journey to guide me from I am being a child until now.

Last but not least, special thanks also to my sibling brothers and sisters especially Siti Yuhana and Adam and friends for providing temporary accommodation and good hospitality while writing this research. I will be forever grateful. Thank you.
TABLE OF CONTENTS

Abstract... ii
Abstract in Arabic.. iii
Approval page ... iv
Declaration... v
Acknowledgements .. vii
Table of Contents ... viii
List of Tables ... xii
List of Figures .. xiv
List of Abbreviations .. xvii
List of Symbols .. xviii

CHAPTER ONE : INTRODUCTION ... 1
1.1 Introduction.. 1
1.2 Research Background ... 1
1.3 Research Problems... 4

1.3.1 Lack of Adequate on Opening Design Provision in Providing Thermal Comfort. .. 4
1.3.2 Dependency on Air-conditioning System to Maintain Thermal Comfort .. 5
1.4 Research Aim and Objectives... 6
1.5 Research Questions... 7
1.6 Research Significances .. 7
1.7 Research Scopes and Limitations .. 9
1.8 Thesis Structure.. 10

CHAPTER TWO : URBAN MOSQUE FAÇADE DESIGN: OPENING TO WALL RATIO (OWR) .. 12
2.1 Introduction.. 12
2.2 Urban Mosque .. 12

2.2.1 Definition of Urban Mosque... 13
2.2.2 Urban Mosque as a New Mosque Typology in Malaysia 14
2.3 Façade Design Studies... 16

2.3.1 Façade Design Performance Assessment....................................... 16
2.3.2 Façade Design Performance on Thermal Comfort 18
2.4 Urban Mosque façade Design (UMFD).. 20

2.4.1 Form of Façade Design... 21
2.4.2 Building Orientations.. 24

2.4.2.1 Mosque Façade Orientations... 25
2.4.2.2 Sun Path Diagram of Mosques in Kuala Lumpur.................. 28
2.4.3 Façade Design Elements... 30

2.4.3.1 Wall Element... 31
2.4.3.2 Window Element... 33
2.4.3.3 Opening Element .. 35
2.5 Opening to Wall Ratio (OWR).. 38
2.6 Summary.. 39
CHAPTER THREE ... 41
INDOOR THERMAL COMFORT ... 41
 3.1 Introduction ... 41
 3.2 Urban Microclimate Issues .. 41
 3.3 The Importance of Thermal Comfort in Architectural Design ... 43
 3.4 Thermal Comfort .. 44
 3.5 Factors affecting Thermal Comfort 46
 3.5.1 Environment Factors .. 46
 3.5.1.1 Air Temperature (AT) ... 47
 3.5.1.2 Mean Radiant Temperature (MRT) 47
 3.5.1.3 Air Velocity (AV) .. 47
 3.5.1.4 Relative Humidity (RH) 47
 3.5.2 Personal Factors .. 48
 3.5.2.1 Metabolic Rate ... 48
 3.5.2.2 Clothing Insulation (Ic) 49
 3.6 Thermal Comfort Studies in Hot and Humid Climate 52
 3.7 Thermal Comfort and Natural Ventilation 55
 3.7.1 Comfort Range ... 56
 3.8 Adaptive Thermal Comfort in Naturally Ventilated Building 58
 3.8.1 Adaptive Thermal Comfort Model (ATC) 59
 3.8.2 Adaptive Thermal Comfort Model (ATC) in Hot and Humid Climate .. 62
 3.9 Thermal Comfort Studies in the Mosque Building 64
 3.10 Investigation Methods in Thermal Comfort Studies in Mosques 67
 3.11 Computer Simulation .. 68
 3.12 Autodesk Ecotect Analysis 2011 70
 3.12.1 Setting up Climate Analysis 71
 3.12.2 Zone Management .. 72
 3.12.2.1 Internal Design Condition 72
 3.12.2.2 Occupancy and Activity Level 75
 3.12.2.3 Building System ... 76
 3.12.2.4 Comfort Band ... 76
 3.12.3 Thermal Analysis .. 76
 3.13 IES Virtual Environment (IES-VE) 78
 3.14 Summary ... 80

CHAPTER FOUR : RESEARCH METHODOLOGY 81
 4.1 Introduction .. 81
 4.2 Scope of Urban Mosque Façade Design (UMFD-OWR) Inventory 81
 4.2.1 Scope of Urban Mosque Population 83
 4.2.2 Scope of Urban Mosque Sampling Procedure 83
 4.2.2.1 Scope of Urban Mosque Location (UML) 84
 4.2.2.2 Scope of Urban Mosque Capacity (UMC) 85
 4.2.2.3 Scope of Urban Mosque Design (UMD) 85
 4.2.3 Development of Urban Mosque Façade Design (UMFD-OWR) Inventory .. 87
 4.2.3.1 Defining Façade Form and Façade Orientations 88
 4.2.3.2 Digitising Façade Orientations 90
 4.2.3.3 Calculation of Opening to Wall Area (OWR) 90
LIST OF TABLES

<p>| Table 2.1 | Type, Level and Settlement Hierarchy of Muslim Worship Places in Malaysia (Source: JPBD, 2011). | 12 |
| Table 2.2 | Findings of Façade Design and Thermal Comfort. | 19 |
| Table 2.3 | Studies on Form of Façades. | 21 |
| Table 2.4 | Studies of Façade Design Elements that affect Thermal Comfort. | 31 |
| Table 3.1 | Metabolic Rates for Typical Tasks (source: ASHRAE Standard 55, 2010). | 49 |
| Table 3.2 | Metabolic Rate for Different Activity (Source: ISO 7730, 1994). | 49 |
| Table 3.3 | Clothing Insulation Values for Typical Ensembles (source: ASHRAE Standard 55, 2010). | 50 |
| Table 3.4 | Clothing Insulation (source: ASHRAE Standard 55, 2010). | 51 |
| Table 3.5 | Thermal Comfort Studies done in Hot and Humid Climate (the Year 2000 and onward). | 53 |
| Table 3.6 | Neutrality Value and Comfort range in naturally ventilated or fan ventilation in Malaysia. | 58 |
| Table 3.7 | Proposed adaptive thermal comfort equation and related criteria for naturally ventilated buildings in hot-humid climate (Source: Toe and Kubota, 2013). | 64 |
| Table 3.8 | Findings on Thermal Comfort Simulation Studies in Naturally Ventilated Buildings (hot-humid). | 69 |
| Table 4.1 | Method Determining the Opening Configuration on UMFD-OWR. | 89 |
| Table 4.2 | Methods of Grid Calculation (Sample: UM 10). | 93 |
| Table 4.3 | Characteristics of Urban Mosque Building Model for Baseline Model and UMFD-OWR Models. | 96 |
| Table 4.4 | Steps in Modelling UMFD-OWR Samples in Ecotect. | 100 |
| Table 4.5 | Recommendation of Climate Analysis of Kuala Lumpur. | 101 |
| Table 4.6 | Recommendation of Zone Management. | 101 |
| Table 4.7 | Material and Properties Assignment in Ecotect. | 104 |</p>
<table>
<thead>
<tr>
<th>Table 4.8</th>
<th>Proposed Times for Daily Prayers.</th>
<th>104</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4.9</td>
<td>Data Input Assignment for UMFD-OWR Models in Ecotect.</td>
<td>111</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Relationship of Opening to Wall (OWR) with UMFD-OWR Samples.</td>
<td>115</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Relationship of UMFD-OWR Mosques and UMFD-OWR Model.</td>
<td>116</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>Relationship between UM Building Form Layout and Thermal Comfort.</td>
<td>117</td>
</tr>
<tr>
<td>Table 5.4</td>
<td>Relationship between UM Building Volumes and Thermal Comfort.</td>
<td>119</td>
</tr>
<tr>
<td>Table 5.5</td>
<td>Relationship between Roof Design and Thermal Comfort.</td>
<td>120</td>
</tr>
<tr>
<td>Table 5.6</td>
<td>Relationship between OWR on NEF and SWF and Thermal Comfort.</td>
<td>121</td>
</tr>
<tr>
<td>Table 5.7</td>
<td>Recommendation for Characteristics of UM Building Model for Base Case Model and UMFD-OWR Models.</td>
<td>122</td>
</tr>
<tr>
<td>Table 5.8</td>
<td>Results on Thermal Analysis of all UMFD-OWR Models (including the Base Case).</td>
<td>131</td>
</tr>
<tr>
<td>Table 5.9</td>
<td>Discussion on Simulation Results in Ecotect and IES-VE.</td>
<td>139</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Summary and Findings for Objective 1.</td>
<td>142</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>Summary and Findings Obtained for Objective 2.</td>
<td>144</td>
</tr>
<tr>
<td>Table 6.3</td>
<td>Summary and Findings Obtained for Objective 3a.</td>
<td>145</td>
</tr>
<tr>
<td>Table 6.4</td>
<td>Summary and Findings Obtained for Objective 3b.</td>
<td>146</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1.1 Masjid Al Bukhary, Kuala Lumpur. 3
Figure 1.2 Masjid Jamek Kuala Lumpur. 3
Figure 1.3 Masjid Asy Syakirin, Kuala Lumpur. 3
Figure 1.4 Masjid Negara, Kuala Lumpur. 3
Figure 1.5 Research Structure. 11
Figure 2.1 Site Location of Urban Mosque: Kuala Lumpur. 15
Figure 2.2 Façade Performance Indicator (Source: Jin, 2013). 18
Figure 2.3 Façade: Division of Façade (Head, Body, Base Treatment) (Source: Alice Sabrina, 2008). 22
Figure 2.4 Subtle Articulation of Base, Middle and Top of Al Jahili Mosque, Al Ain. (Source: MDC, 2017). 22
Figure 2.5 Example of Form of Façade: Urban Masjid (Masjid Negara). 22
Figure 2.6 Façade Form in (i) Plan layout and (ii) Section (Source: Fauziah Hanum, 2018). 23
Figure 2.7 Selected Countries: Countries Orientations towards Kaabah (Re-illustrated by the Author from The History of Makkah-Muhammad Ilyas Abdul Ghani). 25
Figure 2.8 Ranking of Building Orientation based on Ti-To (°C) in Penang-Unventilated (Source: Al-Tamimi, 2011). 26
Figure 2.9 Ranking of Building Orientation based on Ti-To (°C) in Penang-Naturally Ventilated (Source: Al-Tamimi, 2011). 26
Figure 2.10 Orientation of Mosque Building in Malaysia (Masjid Negara) in relation to Qibla Direction (Source: Fauziah Hanum, 2018). 27
Figure 2.11 Mosque Façade Orientations-NWF, NEF, SWF and SEF. 27
Figure 2.12 Sun Path Diagram of Kuala Lumpur (Source: BSEEP, 2013). 29
Figure 2.13 Sun Path Diagram of Mosque Façade Orientations. 30
Figure 3.1 Factors affects Thermal Comfort (Source: Alwetaishi, 2016) 46
Figure 3.2 Thermal Comfort Analysis steps in ASHRAE Standard 55-2017 (Re-illustrated from Mora and Bean, 2018).

Figure 3.3 Acceptable operative temperature ranges for naturally conditioned spaces (ASHRAE Standard 55, 2010).

Figure 3.4 Adaptive Thermal Comfort (Source: BSEEP, 2013b).

Figure 3.5 Examples of Male Worshipper’s Attire Worn to the Mosque in Malaysia.

Figure 3.6 Thermal Analysis for Non-Heating or Cooling System in ECOTECT.

Figure 4.1 Flowchart Method for UMFD Inventory Based on OWR.

Figure 4.2 Scope of Urban Mosque Population.

Figure 4.3 Scope of Sampling Procedure of Urban Mosques.

Figure 4.4 Form Layout Type A.

Figure 4.5 Form Layout Type B.

Figure 4.6 Samples of UM Façade Orientations (NWF and SEF) that are not Parallel to the Qibla Direction.

Figure 4.7 Design Flow of Opening Configuration.

Figure 4.8 Example Digitising the Photo from Original Photo to Drawing.

Figure 4.9 Scope of Façade Area for Calculation.

Figure 4.10 Data Analysis of UMFD-OWR Inventory.

Figure 4.11 Flowchart for Investigating Indoor Thermal Comfort of Urban Mosques.

Figure 4.12 Urban Mosque Model Dimensions Configurations for 1000 Occupants.

Figure 4.13 Relationship between Building Occupancies with Indoor Temperature.

Figure 4.14 Recommended Mosque Occupancy Schedule (MOS).

Figure 4.15 Example of PAI Graph.

Figure 4.16 Data Analysis Thermal Comfort of UMFD-OWR Models using Ecotect.

Figure 4.17 Comparative Analysis on Effect of OWR on Thermal Comfort.
Figure 4.18 Base Case Model in 3D Editor Ecotect.

Figure 4.19 OWR M2 in IES-VE.

Figure 5.1 Effect of UMFD-OWR Models during the Hottest Day.

Figure 5.2 Indoor Temperature of UMFD-OWR Models during the Hottest Day.

Figure 5.3 Effect of UMFD-OWR Models during the Hottest Day.

Figure 5.4 Effect of UMFD-OWR Models on ATD (Comfort Temperature, %).

Figure 5.5 Effect of UMFD-OWR Models on PAI.

Figure 5.6 Indoor Temperature in Prayer halls (OWR M2) during the Hottest and Coolest Day using IES-VE.

Figure 5.7 Comfort index in OWR M2.

Figure 5.8 Effects of OWR M2 in Ecotect and IES-VE.

Figure 5.9 Effects of OWR M2 in Ecotect and IES-VE.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>Two Dimension</td>
</tr>
<tr>
<td>3D</td>
<td>Three Dimension</td>
</tr>
<tr>
<td>AC</td>
<td>Air Conditioning</td>
</tr>
<tr>
<td>ASHRAE</td>
<td>American Society of Heating, Refrigerating and Air-Conditioning Engineers</td>
</tr>
<tr>
<td>AT</td>
<td>Air Temperature</td>
</tr>
<tr>
<td>ATD</td>
<td>Annual Temperature Distribution</td>
</tr>
<tr>
<td>AV</td>
<td>Air Velocity</td>
</tr>
<tr>
<td>BSEEP</td>
<td>Building Sector Energy Efficiency Project</td>
</tr>
<tr>
<td>CD</td>
<td>Coolest Day</td>
</tr>
<tr>
<td>DBT</td>
<td>Dry Bulb Temperature</td>
</tr>
<tr>
<td>PMV</td>
<td>Predicted Mean Vote</td>
</tr>
<tr>
<td>PPD</td>
<td>Predicted Percentage Dissatisfied</td>
</tr>
<tr>
<td>DOS</td>
<td>Department of Statistic, Malaysia</td>
</tr>
<tr>
<td>HT</td>
<td>Hourly Temperature</td>
</tr>
<tr>
<td>HVAC</td>
<td>Heating, Ventilation and Air Conditioning</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>JAWI</td>
<td>Jabatan Agama Islam Wilayah Persekutuan</td>
</tr>
<tr>
<td>JPBD</td>
<td>Jabatan Perancangan Bandar dan Desa Semenanjung Malaysia</td>
</tr>
<tr>
<td>MOS</td>
<td>Mosque Occupancy Schedule</td>
</tr>
<tr>
<td>MRT</td>
<td>Mean Radiant Temperature</td>
</tr>
<tr>
<td>MS</td>
<td>Malaysian Standards</td>
</tr>
<tr>
<td>NEF</td>
<td>North-East Façade</td>
</tr>
<tr>
<td>NWF</td>
<td>North-West Façade</td>
</tr>
<tr>
<td>OWR</td>
<td>Opening to Wall Ratio</td>
</tr>
<tr>
<td>PAI</td>
<td>Passive Adaptivity Index</td>
</tr>
<tr>
<td>RH</td>
<td>Relative Humidity</td>
</tr>
<tr>
<td>SEF</td>
<td>South-East Façade</td>
</tr>
<tr>
<td>SWF</td>
<td>South-West Façade</td>
</tr>
<tr>
<td>UHI</td>
<td>Urban Heat Island</td>
</tr>
<tr>
<td>UM</td>
<td>Urban Mosque</td>
</tr>
<tr>
<td>UMC</td>
<td>Urban Mosque Capacity</td>
</tr>
<tr>
<td>UMD</td>
<td>Urban Mosque Design</td>
</tr>
<tr>
<td>UMFD</td>
<td>Urban Mosque Façade Design</td>
</tr>
<tr>
<td>UML</td>
<td>Urban Mosque Location</td>
</tr>
<tr>
<td>UNICEF</td>
<td>United Nations Children’s Fund</td>
</tr>
<tr>
<td>WWR</td>
<td>Window to Wall Ratio</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Percentage (Unit for Ratio in Percentage)</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius (Unit of Temperature)</td>
</tr>
<tr>
<td>clo.</td>
<td>Unit Measurement for Clothing Insulation</td>
</tr>
<tr>
<td>h</td>
<td>Unit Measurement of Hour</td>
</tr>
<tr>
<td>Icl</td>
<td>Clothing Insulation</td>
</tr>
<tr>
<td>km/h</td>
<td>Unit Measurement of Distance per Hour</td>
</tr>
<tr>
<td>lux</td>
<td>Unit Measurement of Illuminance</td>
</tr>
<tr>
<td>m</td>
<td>Meter (Unit Measurement of Length, Width, Height)</td>
</tr>
<tr>
<td>m/s</td>
<td>Meter per second (Unit Measurement of Air Velocity)</td>
</tr>
<tr>
<td>m²</td>
<td>Meter square (Unit Measurement of Total Area)</td>
</tr>
<tr>
<td>Met</td>
<td>Unit Measurement of Metabolic Rate</td>
</tr>
<tr>
<td>mm</td>
<td>Unit of Measurement for Thickness</td>
</tr>
<tr>
<td>Tₐ</td>
<td>Air Temperature</td>
</tr>
<tr>
<td>Tᵢ</td>
<td>Indoor Air Temperature</td>
</tr>
<tr>
<td>Tₐ</td>
<td>Thermal Neutrality or Comfort Temperature</td>
</tr>
<tr>
<td>Tₒ</td>
<td>Outdoor Air Temperature</td>
</tr>
<tr>
<td>W/m²</td>
<td>Unit Measurement of Activity Level</td>
</tr>
</tbody>
</table>
CHAPTER ONE
INTRODUCTION

1.1 INTRODUCTION
This chapter discusses the relevance of selecting the urban mosque façade design to achieve thermal comfort. It describes the research background and the research problem that arises thereof. The chapter also elaborates the research aims, objectives, questions, significance, scope and limitations to achieve the desired outcomes of the research. In addition, a general overview of this research is explained by outlining the research structure.

1.2 RESEARCH BACKGROUND
According to 2016 census data, Malaysia has approximately 31 million people. The most populated is urban areas, which made up 74.8% of the population (24,509,005-est. 2016). This percentage is expected to increase in the future (www.worldometers.info, 2018). Muslims recorded the highest percentage in comparison with other religions (Department of Statistics Malaysia (DOS), 2011). Hence, the provision of the urban mosque is important to cater to a large Muslim population in urban areas.

The study of urban mosques in Malaysia is very limited. The only finding related to urban mosques is by Norhanis Diyana (2014 and 2015). The researcher focused on spatial, social and cultural aspects of urban mosques. Given the paucity of studies of urban mosques, the study on the façade design of urban mosque is significant.

Corresponding to the only study of urban mosques in Malaysia by Norhanis Diyana, the term “urban mosque” is the mosque located in an urban or city setting. This
research adopts this definition. Kuala Lumpur is selected as the site area for urban mosques due to the high rate of urbanisation (Department of Statistics Malaysia, 2015).

The development of mosques and its functions in the Muslim community in Malaysia prioritises worshippers’ comfort (Mohd Firrdhaus, 2016). Insufficient thermal comfort in the mosque causes discomfort for worshippers (Hussin, Salleh, Chan and Mat, 2014). Installing air-condition systems in the mosque in Malaysia has become a norm for cooling the worshippers. However, the lack of research and information on the level of comfort of the prayer hall in the mosque in Malaysia makes it difficult to improve its comfort (Hussin et al., 2014b).

Thermal comfort is one of the functional indicators identified by Jin (2013) for façade performance assessment. There is a significant relationship between façade design and thermal comfort. A good façade design can help optimise daylight and thermal comfort (Department of Standards Malaysia - MS 1525, 2014). Thus, this research focuses on the façade design of urban mosques to determine its effects on thermal comfort.

The façade design of urban mosques in Kuala Lumpur signifies the variety of façade designs in terms of design articulation (see Figure 1.1-1.4). MS 1525:2014 added that the façade of the building is the external face of the building that encompasses the fenestration and other elements that describe the building form and aesthetics, enables indoor climatic control and provides security to occupants from weathering. Nurul ’Athiqah and Alice Sabrina (2014) and Alice Sabrina (2008) also categorised the façade form of the mosque into the base, middle and top. These façades of mosques include the design elements for the floor, wall, opening, window, and roof or dome. Prior to the façade form or building the mosque, Shafizal (2014) researched the thermal comfort resulting from the roof design for Malaysian mosques.
The opening is one of the design elements in the middle form of the mosque façade design. Figures 1.1-1.4 show that the opening element of the mosque’s façade is a significant design element. The opening or voids increase the air movement to ventilate the building and increase the air temperature. Noor Hanita, Mohd Shafiq, Zaiton, and Rosniza (2015) and Ogunjimi, Osunade, and Alabi (2007) supported that the opening design or the amount of ventilation of the opening has significant effects on the thermal comfort of a building. Thus, it is significant to investigate the effects of the opening area of the urban mosque façade design on thermal comfort.

The findings of the relationship between opening on façade design and thermal comfort will contribute to providing more comfortable indoor spaces of urban mosques and insights into the development of mosque design.
1.3 RESEARCH PROBLEMS

There are two (2) research problems identified for this research. Section 1.3.1 and 1.3.2 describe the research problems.

1.3.1 Lack of Adequate on Opening Design Provision in Providing Thermal Comfort.

Architects maximise the use of the opening of the urban mosque façade in Kuala Lumpur (see Figures 1.1-1.4) to enhance how mosques look. The opening arrangement and configurations of the mosque’s façades contribute to the variety of façade designs of urban mosques and are visually attractive.

Despite attracting people through the physical design of the opening, Aflaki, Norhayati and Zakaria Al-Cheikh (2012) added that the opening is an effective strategy to reduce the external heat in a tropical climate. They also stated that openings on the building façade play a significant role in controlling air flow which ensures the indoor air can be maintained through the combination of fresh outdoor air and indoor air. However, in designing building façades, architects usually pay more attention to the aesthetic aspects, while neglecting the influence of opening forms on energy consumption (You, Qin, and Ding, 2013). Besides, there is not enough attention paid to façade design from an operable aspect.

The design and performance of the façade openings that allow outdoor air to flow in and stale air to flow out of a building influence the success of the natural ventilation system in the building (Moghaddam, Amineldar, and Besharatizadeh, 2011). These openings can take the form of simple holes, openable windows, trickle ventilators or through wall ventilators (Sharples and Chilengwe, 2006) or other types such as trickle vents or louvres (Heiselberg, Bjørn, and Nielsen, 2002). You et al. (2013)
also identified that the façade opening in the building design domain contains abundant content, like the fixed window which can only receive daylight, an operable window which can receive daylight and natural ventilation, and a ventilation cave which can only receive natural ventilation. To accurately quantify the influence of opening forms of building façades on thermal comfort, this research adopted computer simulation techniques.

Facade designs and natural ventilation are two passive design strategies recommended in MS 1525:2014 for non-residential buildings. Shafizal (2014) found that bigger openings allow a faster heating and cooling process until the indoor air temperature reaches the same temperature as the outside air. Consequently, the opening area of the building influences the heat gain in the indoor environment.

Properly designed building façades will minimise the usage of air-conditioning as cooling demand which leads to a decrease in electricity cost and energy consumption (Aksamija, 2014). However, there are limited studies on the effect of the opening of façade designs on thermal comfort particularly in the urban mosques in Malaysia.

1.3.2 Dependency on Air-conditioning System to Maintain Thermal Comfort.
The provision of thermal comfort for worshippers is a prime concern in mosque building (Hussin et al., 2014; Bakhlah, M. S. and Hassan, 2012). Najafi and Shariff (2011) also stated that the mosque with a good thermal comfort is preferred. However, it has been anecdotally observed that mosques with air-conditioning systems attract a more significant number of worshippers for the daily prayers compared to the non-air-conditioned mosque (naturally ventilated). Hussin et al. (2014) and Fauziah Hanum, Noor Hanita and Rosniza (2016) also identified that low-quality environments within
the urban built environment such as thermal comfort in the mosque decrease levels of people’s attendance.

It has become common practice that mosques in Malaysia are installed with air-conditioning (AC) systems to provide cooling and better thermal comfort for the worshippers. The increasing trend of AC use in Malaysian mosque buildings increases electricity consumption in the daily mosque operations. The function of the air-conditioning system is to address the heat load of buildings with cooling and increase the comfort of occupants (Siti Halipah, Azhaili, M. Nasrun and Ervina, 2014). The heat load in mosques have contributed to an overall poor thermal performance of mosque buildings which have become more dependent on artificial means to provide a comfortable thermal environment at high energy consumption. Thus, the provision of thermal comfort for naturally ventilated mosques requires research, especially urban mosques.

1.4 RESEARCH AIM AND OBJECTIVES

The main aim of this study is to investigate the effectiveness of the opening to wall ratio (OWR) of façade design on the indoor thermal comfort of urban mosque’s prayer halls. To achieve this, the following objectives are targeted:

1. To define façade openings for urban mosque façade design (UMFD).
2. To determine the configurations of opening to wall ratio (OWR) of urban mosque façade design (UMFD) for thermal analysis.
3. To investigate the effects of the opening to wall ratio (OWR) on indoor thermal comfort in urban mosques’ prayer hall in terms of thermal analysis in air temperature.