EVALUATION OF ANTIOXIDANT CONCENTRATIONS AND ACTIVITIES OF MIXED SPICES AND HERBS

BY

OVAIS ULLAH SHIRAZI

A thesis submitted in fulfilment of the requirement for the degree of Master of Health Sciences (Nutrition Sciences)

Kulliyyah of Allied Health Sciences
International Islamic University Malaysia

FEBRUARY 2016
Spices and herbs are used in culinary and are also considered medicinally important due to their antioxidant contents. In this project four spices namely, *Zingiber officinale* (Ginger), *Allium cepa* (Onion), *Syzygium aromaticum* (Clove), *Cymbopogon citrates* (Lemongrass) and four herbs such as *Allium fistulosum* (Bunching onion), *Coriandrum Sativum* (Coriander), *Murraya koenigii* (Curry leaves) and *Ocimum tenuiflorum* (Holy basil) were incorporated into three different formulations. These formulations namely F1 (mixed herbs 25% each), F2 (mixed spices 25% each) and F3 (mixed spices & herbs 12.5% each) were studied for their antioxidant/mineral profile. The three formulations were extracted with cold water, hot water & methanol and the extracts were analyzed for antioxidant contents/activities. The antioxidants like total phenolic contents (TPC) were determined by Folin- Ciocalteu method, total flavonoid contents (TFC) were determined by Aluminium chloride complex forming assay. The antioxidants such as gallic acid, catechin and quercetin were quantified chromatographically. Whereas the antioxidant activities of the extracts were determined by DPPH, HRSA and FRAP assays. Minerals such as Magnesium (Mg), Calcium (Ca), Potassium (K), and trace elements such as Manganese (Mn), Chromium (Cr), Copper (Cu), Iron (Fe) and Zinc (Zn) were determined by using ICP-MS. The collected data of the listed parameters was statistically analyzed by using SPSS. The methanolic extract of formulation F3 (mixed spices & herbs) showed significantly (p<0.05) higher TPC with the mean concentration of 4.45 ± 0.2 mg GAE/ml. The methanolic extract of formulation F3 showed significantly (p<0.05) higher TFC being 3.30 ± 0.22 mg QE/ml. Furthermore, the chromatographic evaluation of formulation F2 showed highest concentration of gallic acid, catechin and quercetin that is 86.0, 339.40 & 394.59 µg/ml respectively. The antioxidant activities in DPPH assay of the methanolic extract of formulation F3 showed significantly (p<0.05) stronger antioxidant activity with the IC50 value of 65.03 ± 2.3 µg GAE/ml. In HRSA the hot water extract of formulation F3 showed significantly (p<0.05) stronger activity with IC50 value of 1493 ± 187.4 µg AAE/ml. In FRAP assay the cold water extract of F2 showed significantly (p<0.05) stronger activity being the FRAP value of 98.9 ± 4.3 µg TE/ml. Considering the results of mineral analysis, F1 showed significantly (p<0.05) higher Potassium (K) content of 33589 ± 841 µg/g. The results of this study indicate that as a whole the formulations F2 & F3 possessed higher antioxidant contents/activities than F1. Furthermore, significant (p<0.05) associations between the antioxidant contents and activities were observed. As an outcome of this study it could be said that the use of tested formulations of spices and herbs as health supplements could be highly effective to control the drastic repercussions of the oxidative stress.
ملخص البحث

إن التوابل والأعشاب التي تستخدم في الطهي بوصفها مواد، قد اعتبرت مضادات للأكسدة (Ginger) والخل طبيعياً. وهذا المشروع والتخطيط تتولى أربعة أنواع من التوابل، وهي: نبات الرزغيل والألومينيوم (CEPA) والبحث، والسوسة العطرية (القرنفل) وفواكه الطماطم، وفواكه البصل، والكرز، (الكربون)، وذلك أربعة البصل، يمتص البصل والكرز كسيريتس في F1 (التوابل المختلطة 25٪ لكل منها)، و F2 (التوابل المختلطة 12.5٪ لكل منها)، وينتج هذه البحث مساهمة مضادات الأكسدة / المعدنية. وقد أجريت القياسات الثلاث باليوم البارد، والماء الساخن، والمياه. ومنشأة المعادن، مثل: مضادات الأكسدة الكامنة، مثل: مختلطة الفينول الكاملة (TFC)، والمركبات الفلافونويد بجميع Mg، وكالسيوم، Ca، والنيكسيوم، Cu، والبوتاسيوم، K، والكروم، Cr، والزنك، Zn، والكاريوم، Fe، والكالسيوم، Ca، والكربون، Co، (K), والزنك، Zn، والكروم، Cr، والكاريوم، Fe، والكربون، Co، (K), والزنك، Zn، والكريمون، Co، (K), والزنك، Zn، والكريمون، Co، (K).

وتتم تحليل البيانات والمعلومات الإحصائية باستخدام برنامج MS. ومن خلال فحص F3 (التوابل المختلطة والأعشاب)، وأظهرت أهمية أعلى (P<0.05) مع TPC متوسط تركيز 4.45 ± 0.2 ملغ/مل. وباستخراج ميثانول من صياغة F3، وأظهرت معنويًا (P<0.05) أعلى نشاطًا وأقوى لـ GAE مبلغ 3.30 ± 0.22 ملغ/مل. إضافةً إلى ذلك، فإن التقييم الكروماتوغرافي من F2 صياغة وأظهرت أعلى نسبة من حمض الغل، كاتشين وكيرسيتين وذلك، وقد اكتسبت الثالث، من F1، وأظهرت معنويًا (P<0.05) أقوى الأنشطة HRSA للمضادة للأكسدة مع GAE مبلغ 65.03 ± 2.3 ميكروغرام/مل. في استخراج الماء الساخن من صياغة F3، وأظهرت معنويًا (P<0.05) نسبة أقوى IC50 مع قيمة 50 ملم. وفي تقييم FRAP / AAE مبلغ 187.4 ± 1493 ملم من FRAP HRSA.
أظهرت بشكل ملحوظ (ف < 0.05) مقدارًا أعلى لمؤشر عمليات FRAP من 98.9 ± 4.3 ميكروغرام TE/مل. ونتائج تحليل المعادن أظهرت أن المحتوى من 0.05 ميكروغرام/ملي. ونتائج هذه الدراسة تشير إلى أن F1 أعلى محتوى من 33589 ± 841 ميكروغرام/غ. ونتائج هذه الدراسة تشير إلى أن F2 وأحرزت F3 أعلى مضادات للأكسدة محتويات/الأنشطة من F1. وبالإضافة، تم ملاحظة P < 0.05 العلاقات المهمة بين المحتويات والأنشطة المضادات للأكسدة. وخلاصة هذه الدراسة يمكن القول إن استخدام التركيبات باختبار التوابل والأعشاب بوصفها مواد غذائية وصحية تعطي قيمة عالية، وفعالة لحماية للسيطرة على التداعيات الجذرية للأكسدة.
I certify that I have supervised and read this study and that in my opinion, it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a thesis for the degree of Master of Health Sciences (Nutrition Sciences).

Muhammad Muzaffar Ali Khan
Khattak
Supervisor

Nor Azwani Mohd Shukri
Co-Supervisor

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a thesis for the degree of Master of Health Sciences (Nutrition Sciences).

Normah Binti Haron
Internal Examiner

Hamid Jan Bin Jan Mohamed
External Examiner

This thesis was submitted to the Department of Nutrition Science and is accepted as a fulfilment of the requirement for the degree of Master of Health Sciences (Nutrition Sciences).

Nor Azwani Mohd Shukri
Head, Department of Nutrition Sciences

This thesis was submitted to the Kulliyyah of Allied Health Science and is accepted as a fulfilment of the requirement for the degree of Master of Health Sciences (Nutrition Sciences).

Wan Azdie Bin Mohd Abu Bakar
Dean, Kulliyyah of Allied Health Sciences
DECLARATION

I hereby declare that this thesis is the result of my own investigations, except where otherwise stated. I also declare that it has not been previously or concurrently submitted as a whole for any other degrees at IIUM or other institutions.

Ovais Ullah Shirazi

Signature…………………… Date……………….
INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

DECLARATION OF COPYRIGHT AND AFFIRMATION OF FAIR USE OF UNPUBLISHED RESEARCH

EVALUATION OF ANTIOXIDANT CONCENTRATIONS AND ACTIVITIES OF MIXED SPICES AND HERBS

I declare that the copyright holders of this thesis are jointly owned by the student and IIUM.

Copyright © 2016 by Ovais Ullah Shirazi and International Islamic University Malaysia. All rights reserved.

No part of this unpublished research may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the copyright holder except as provided below:

1. Any material contained in or derived from this unpublished research may only be used by others in their writing with due acknowledgement.

2. IIUM or its library will have the right to make and transmit copies (print or electronic) for institutional or academic purposes.

3. IIUM or its library will have the right to make, store in a retrieval system and supply copies of this unpublished research if requested by other universities and research libraries.

By signing this form, I acknowledged that I have read and understand the IIUM Intellectual Property Right and Commercialization policy.

Affirmed by Ovais Ullah Shirazi

.. ..
Signature Date
Dedicated to my loving parents; my father Kalim Ullah Shirazi (late) and my mother Farida Shirazi those who always motivated me to obtain higher education and always prayed for my success. A special message of gratitude to my uncle Mian Tufail Bismil, my younger sister Quratulain and my friends Nasyriq, Aa’zam and Badaruddin those who always strengthened my confidence to remain integrated and composed during the entire course of this journey.
ACKNOWLEDGEMENTS

Firstly I want to thank Allah S.W.T the most gracious and merciful who gave me the strength and ability to complete this study and peace be upon our beloved prophet Muhammad (S.A.W).

I am highly obliged to my respectful supervisors; Associate Professor Dr. Muhammad Muzaffar Ali Khan Khattak and Assistant Professor Dr. Nor Azwani Mohd Shukri who guided and encouraged me throughout this project and put me into the correct direction. They not only shared their academic knowledge but also dealt with true kindness for which I really thank them.

Here I want to acknowledge the kind attitude and assistance of the laboratory staff of Nutrition and Biochemistry department laboratories of Kulliyyah of Allied Health Sciences, International Islamic University Malaysia (IIUM) and the Central laboratory of University Malaysia Pahang (UMP). Finally I want to thank Sr. Intan Eliza Binti Abdul Aziz and the entire post graduate administrative staff of Kulliyyah of Allied Health Sciences, IIUM.
TABLE OF CONTENTS

Abstract ... ii
Abstract in Arabic ... iii
Approval Page ... v
Declaration ... vi
Copyright Page ... vii
Dedication ... viii
Acknowledgements .. ix
List of Tables .. xiii
List of Figures .. xv
List of Abbreviations ... xvi

CHAPTER ONE: INTRODUCTION .. 1
1.1 Background of the Study ... 1
1.2 Statement of the Problem ... 2
1.3 Significance of the Study ... 2
1.4 Objectives .. 4
 1.4.1 General objective .. 4
 1.4.2 Specific objectives .. 4
1.5 Hypothesis ... 4

CHAPTER TWO: LITERATURE REVIEW ... 5
2.1 Spices and herbs ... 5
2.2 Antioxidants ... 6
2.3 Classification of antioxidants .. 6
 2.3.1 Natural antioxidants ... 6
 2.3.1.1 Enzymatic antioxidants ... 7
 2.3.1.2 Non-enzymatic antioxidants ... 8
 2.3.2 Synthetic antioxidants ... 12
2.4 Free radical scavenging mechanism of antioxidants 12
 2.4.1 Preventive mechanism ... 12
 2.4.2 Chain breaking mechanism ... 13
2.5 The importance of dietary antioxidants & NCDs 14
 2.5.1 Fruits .. 15
 2.5.2 Vegetables .. 15
 2.5.3 Beverages ... 16
 2.5.4 Whole grains .. 16
2.6 Selection of spices and herbs ... 18
 2.6.1 Spices ... 18
 2.6.1.1 Ginger .. 18
 2.6.1.2 Onion .. 19
 2.6.1.3 Clove .. 19
 2.6.1.4 Lemongrass ... 20
 2.6.2 Herbs .. 20
 2.6.2.1 Coriander leaves ... 21
 2.6.2.2 Bunching onion ... 21
2.6.2.3 Curry leaves... 21
2.6.2.4 Holy basil leaves ... 22
2.7 Basic extraction methods for antioxidant studies 23
2.8 Common antioxidant assays .. 24
2.8.1 Methods based on electron transfer (ET) 24
 2.8.1.1 Trolox equivalent antioxidant capacity (TEAC) assay 25
 2.8.1.2 Ferric reducing antioxidant power (FRAP) assay 25
 2.8.1.3 2, 2-Diphenyl-1- picrylhydrazyl (DPPH) assay 26
 2.8.1.4 Copper (Cu$^{2+}$) reduction capacity assay 27
 2.8.1.5 Folin-Ciocalteu method ... 27
2.8.2 Methods based on hydrogen atom transfer (HAT) 27
 2.8.2.1 Oxygen radical absorbance capacity (ORAC) method 28
 2.8.2.2 Total radical trapping antioxidant parameter
 (TRAP) assay .. 29
 2.8.2.3 Hydrogen peroxide (H$_2$O$_2$) scavenging capacity assay ... 29
2.8.3 Other antioxidant assays... 29
 2.8.3.1 Total oxidant scavenging capacity (TOSC) 29
 2.8.3.2 Thiobarbituric acid reactive substances (TBARS) assay .. 30
 2.8.3.3 Cellular antioxidant activity (CAA) assay 30

CHAPTER THREE: METHODOLOGY.. 31
3.1 Materials... 31
 3.1.1 Chemicals ... 31
 3.1.2 Instruments ... 32
 3.1.3 Spices and herbs ... 32
3.2 Preparation of sample... 33
 3.2.1 Procurement of spices and herbs 33
 3.2.2 Processing of raw spices and herbs 33
 3.2.3 Grinding and mixing ... 35
3.3 Experimental procedures.. 35
 3.3.1 Extraction with cold water .. 35
 3.3.2 Extraction with hot water .. 36
 3.3.3 Extraction with methanol .. 36
3.4 Analysis of antioxidants.. 37
 3.4.1 Determination of total phenolic contents (TPC) 37
 3.4.2 Determination of total flavonoid contents (TFC) 38
3.5 Assessment of antioxidant activities.................................. 38
 3.5.1 2, 2-Diphenyl-1- picrylhydrazyl (DPPH) assay 39
 3.5.2 Hydroxyl radical scavenging assay (HRSA) 40
 3.5.3 Ferric reducing antioxidant power (FRAP) assay 41
3.6 Analysis of specific antioxidants....................................... 42
3.7 Analysis of minerals .. 44
3.8 Statistical Analysis.. 47

CHAPTER FOUR: RESULTS.. 49
4.1 Antioxidant contents ... 49
 4.1.1 Total phenolic contents (TPC) 49
 4.1.2 Total flavonoid contents (TFC) 51
4.2 Antioxidant activities .. 52
 4.2.1 2, 2- Diphenyl-1- picrylhydrazyl (DPPH) assay 53
 4.2.2 Hydroxyl radical scavenging assay (HRSA) 54
 4.2.3 Ferric reducing antioxidant power (FRAP) assay 56
4.3 Quantification of phenolic acids & flavonoids 57
4.4 Mineral analysis .. 58

CHAPTER FIVE: DISCUSSION ... 61
 5.1 Importance of freeze drying .. 61
 5.2 Importance of extraction .. 62
 5.3 Antioxidant contents ... 64
 5.4 Antioxidant activity .. 67
 5.5 Possible associations .. 69
 5.5.1 Relationship between total phenolic and flavonoid contents 70
 5.5.2 Relationship between the antioxidant contents and activities 71
 5.6 The clinical significance of the specific antioxidants 73
 5.7 The clinical significance of the minerals 75
 5.8 Conclusions ... 78
 5.9 Strengths/weaknesses of the study 79
 5.10 Recommendations for future research 81

REFERENCES .. 83

APPENDIX A: STANDARD CURVES .. 103
APPENDIX B: CHROMATOGRAMS OF ANTIOXIDANTS (HPLC) 108
APPENDIX C: CERTIFICATES ... 112
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Microwave acid digestion temperature control program</td>
<td>46</td>
</tr>
<tr>
<td>3.2</td>
<td>Operational settings of inductively coupled plasma mass spectrometer (ICP-MS)</td>
<td>47</td>
</tr>
<tr>
<td>4.1</td>
<td>Total phenolic contents of cold water extracts (mg GAE/ml)</td>
<td>50</td>
</tr>
<tr>
<td>4.2</td>
<td>Total phenolic contents of hot water extracts (mg GAE/ml)</td>
<td>50</td>
</tr>
<tr>
<td>4.3</td>
<td>Total phenolic contents of methanolic extracts (mg GAE/ml)</td>
<td>50</td>
</tr>
<tr>
<td>4.4</td>
<td>Total flavonoid contents of cold water extracts (mg QE/ml)</td>
<td>51</td>
</tr>
<tr>
<td>4.5</td>
<td>Total flavonoid contents of hot water extracts (mg QE/ml)</td>
<td>51</td>
</tr>
<tr>
<td>4.6</td>
<td>Total flavonoid contents of methanolic extracts (mg QE/ml)</td>
<td>52</td>
</tr>
<tr>
<td>4.7</td>
<td>Antioxidant activities (IC$_{50}$) of cold water extracts of the formulations µg GAE/ml DPPH</td>
<td>53</td>
</tr>
<tr>
<td>4.8</td>
<td>Antioxidant activities (IC$_{50}$) of hot water extracts of the formulations µg GAE/ml DPPH</td>
<td>53</td>
</tr>
<tr>
<td>4.9</td>
<td>Antioxidant activities (IC$_{50}$) of methanolic extracts of the formulations µg GAE/ml DPPH</td>
<td>54</td>
</tr>
<tr>
<td>4.10</td>
<td>Antioxidant activities (IC$_{50}$) of cold water extracts of the formulations µg AAE/ml HRSA</td>
<td>55</td>
</tr>
<tr>
<td>4.11</td>
<td>Antioxidant activities (IC$_{50}$) of hot water extracts of the formulations µg AAE/ml HRSA</td>
<td>55</td>
</tr>
<tr>
<td>4.12</td>
<td>Antioxidant activities (IC$_{50}$) of methanolic extracts of the formulations µg AAE/ml HRSA</td>
<td>55</td>
</tr>
<tr>
<td>4.13</td>
<td>Antioxidant activities (FRAP values) of cold water extracts of the formulations µg TE/ml</td>
<td>56</td>
</tr>
<tr>
<td>4.14</td>
<td>Antioxidant activities (FRAP values) of hot water extracts of the formulations µg TE/ml</td>
<td>57</td>
</tr>
<tr>
<td>4.15</td>
<td>Antioxidant activities (FRAP values) of methanolic extracts of the formulations µg TE/ml</td>
<td>57</td>
</tr>
</tbody>
</table>
4.16 Chromatographic evaluation of gallic acid, catechin and quercetin in the methanolic extracts of tested formulations (µg/ml) 58

4.17 The mineral contents in the formulations of spices and herbs expressed as µg/g 59
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The structures of phenolic acids</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>The structures of flavonoids</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Structure of Butyaltedhydroxytoluene (BHT)</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>Reaction mechanism of FRAP antioxidant assay</td>
<td>26</td>
</tr>
<tr>
<td>2.5</td>
<td>2, 2-Diphenyl-1-picrylhydrazyl (DPPH)</td>
<td>26</td>
</tr>
<tr>
<td>2.6</td>
<td>Hydrogen atom transfer antioxidant reaction</td>
<td>28</td>
</tr>
<tr>
<td>2.7</td>
<td>Loss of fluorescence of probe due to oxidation by free radicals in ORAC assay</td>
<td>28</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow chart of the experimental procedures</td>
<td>34</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>NCDs</td>
<td>Non-Communicable diseases</td>
</tr>
<tr>
<td>T2DM</td>
<td>Type 2 Diabetes Mellitus</td>
</tr>
<tr>
<td>CVD</td>
<td>Cardiovascular diseases</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxide dismutase</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>BHA</td>
<td>Butylatedhydroxanisol</td>
</tr>
<tr>
<td>BHT</td>
<td>Butylatedhydroxytoluene</td>
</tr>
<tr>
<td>PG</td>
<td>Propyl gallate</td>
</tr>
<tr>
<td>TBHQ</td>
<td>Tertiary butyl hydroquinone</td>
</tr>
<tr>
<td>NDGA</td>
<td>Nordihydroguaretic acid</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>ET</td>
<td>Electron transfer</td>
</tr>
<tr>
<td>TEAC</td>
<td>Trolox equivalent antioxidant capacity</td>
</tr>
<tr>
<td>ABTS</td>
<td>Azinobisethyl benzothiazoline sulfonate</td>
</tr>
<tr>
<td>TPTZ</td>
<td>Tripyridyltriazine</td>
</tr>
<tr>
<td>FRAP</td>
<td>Ferric reducing antioxidant power</td>
</tr>
<tr>
<td>DPPH</td>
<td>Diphenyl picrylhydrazyl</td>
</tr>
<tr>
<td>HAT</td>
<td>Hydrogen atom transfer</td>
</tr>
<tr>
<td>ORAC</td>
<td>Oxygen radical absorbance capacity</td>
</tr>
<tr>
<td>TRAP</td>
<td>Total radical trapping antioxidant parameter</td>
</tr>
<tr>
<td>TOSC</td>
<td>Total oxidant scavenging capacity</td>
</tr>
<tr>
<td>KMBA</td>
<td>Keto methiol butyric acid</td>
</tr>
<tr>
<td>TBARS</td>
<td>Thiobarbuturic acid reactive substances</td>
</tr>
<tr>
<td>MDA</td>
<td>Malondialdehyde</td>
</tr>
<tr>
<td>CAA</td>
<td>Cellular antioxidant activity</td>
</tr>
<tr>
<td>DCF</td>
<td>Dichlorofluorescein</td>
</tr>
<tr>
<td>ABAP</td>
<td>Azobisamidinopropane</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>PDA</td>
<td>Photo diode array</td>
</tr>
<tr>
<td>SOP</td>
<td>Standard operating procedures</td>
</tr>
<tr>
<td>ICP-MS</td>
<td>Inductively coupled plasma mass spectrometry</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>TPC</td>
<td>Total phenolic contents</td>
</tr>
<tr>
<td>TFC</td>
<td>Total flavonoid contents</td>
</tr>
<tr>
<td>GAE</td>
<td>Gallic acid equivalent</td>
</tr>
<tr>
<td>QE</td>
<td>Quercetin equivalent</td>
</tr>
<tr>
<td>AAE</td>
<td>Ascorbic acid equivalent</td>
</tr>
<tr>
<td>TE</td>
<td>Trolox equivalent</td>
</tr>
<tr>
<td>HRSA</td>
<td>Hydroxyl radical scavenging assay</td>
</tr>
<tr>
<td>F1</td>
<td>Formulation 1</td>
</tr>
<tr>
<td>F2</td>
<td>Formulation 2</td>
</tr>
<tr>
<td>F3</td>
<td>Formulation 3</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>CWE</td>
<td>Cold water extract</td>
</tr>
<tr>
<td>HWE</td>
<td>Hot water extract</td>
</tr>
<tr>
<td>ME</td>
<td>Methanolic extract</td>
</tr>
<tr>
<td>UE</td>
<td>Ultrasound extraction</td>
</tr>
<tr>
<td>AE</td>
<td>Agitation extraction</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical package for social sciences</td>
</tr>
<tr>
<td>PPM</td>
<td>Parts per million</td>
</tr>
<tr>
<td>AUC</td>
<td>Area under curve</td>
</tr>
<tr>
<td>ADA</td>
<td>American Diabetes Association</td>
</tr>
<tr>
<td>AOAC</td>
<td>Association of analytical communities</td>
</tr>
</tbody>
</table>
CHAPTER ONE
INTRODUCTION

1.1 BACKGROUND OF THE STUDY

Traditionally spices and herbs are used in all cultures of the world for culinary purposes in order to flavor the food and mask the undesirable odor of meat and other constituents used for cooking. Along with the culinary uses of spices and herbs their medicinal importance is a subject of great interest for the modern researchers in the field of health and nutritional sciences (Lai and Roy, 2004). The medicinal importance of spices and herbs is because of the phytochemicals that they contain in considerable amounts. The phytochemicals of nutritional importance are known as antioxidants. The polyphenols such as phenolic acids and flavonoids are the major antioxidants found in spices and herbs (Hinneburg, Damien Dorman and Hiltunen, 2006). In the body they play an important role in the detoxification of metabolic products namely free radicals (Moskovitz, Yim and Chock, 2002). These free radicals are highly reactive and they react with cellular deoxyribonucleic acid (DNA) that may result into its mutations. These mutations in turn cause certain non-communicable diseases (NCDs) such as diabetes mellitus, atherosclerosis, Alzheimer’s disease and various types of cancer (Milic et al., 2014). Though the body is equipped with endogenous (internal) antioxidant systems to neutralize these free radicals but these endogenous antioxidants alone cannot cope with the oxidative stress generated by free radicals (Terevinto, Ramos, Castroman, Cabrera, and Saadoun, 2010). An appropriate intake of dietary antioxidants is highly important in order to minimize the free radical hits and to delay the occurrence of NCDs (Kadam et al., 2008).
The major focus of this study was to quantify the probable antioxidants and various minerals in three different formulations of spices and herbs so that they could be used as nutritional supplements to prevent various NCDs. Four spices such as Ginger, Onion, Clove and Lemongrass and four herbs such as Coriander, Bunching onion, Curry leaves and Holy basil were formulated to estimate their phenolic/flavonoid & mineral contents along with their free radical scavenging potential.

1.2 STATEMENT OF RESEARCH PROBLEM
According to the statistics and reports published by various health governing authorities there is a higher prevalence of certain NCDs all over the world (Narayan, Ali and Koplan, 2010). The rapid industrialization and change in lifestyles are considered the main causes for NCDs however they can be prevented to a certain extent by the adoption of healthy lifestyles and dietary practices (Kelishadi et al., 2008). The major emphasis of this project is on the medicinal importance of spices and herbs attributed by their high antioxidant contents (Vallverdú et al., 2014). This project aims to accumulate the medicinal contents (antioxidants and minerals) present in different spices and herbs in the form of different combinations so as to develop a supplement being able to impart a synergistic effect for the maintenance of good health.

1.3 SIGNIFICANCE OF THE STUDY
The recent literature is full of evidences that free radicals are continuously produced in the body and they impart serious toxicity to cellular organelles. These free radicals are cytotoxic in nature and are needed to be neutralized continuously so as to prevent
the cellular damage. Antioxidants being capable to scavenge free radicals must be present in effective concentrations within the body to control the oxidative stress. A sufficient dietary intake of antioxidants provide a better shielding effect against the ever threatening free radicals.

The project under investigation may provide a useful combination of spices and herbs that could be a potent source of antioxidants in the fight against the health challenging toxicities imparted by free radicals. Thus the findings of this project would contribute to design an efficacious supplement the regular intake of which may provide protection against certain NCDs for which free radicals are considered one of the major causes.

One possible implication of this supplement towards the treatment and prevention of NCDs could be its role in minimizing the cost of treatment. As most of the medicines for NCDs are recommended for lifelong use and sometimes in extreme circumstances very high doses are prescribed. So the concurrent use of a supplement based on common spices and herbs could effectively minimize the cost of treatment by minimizing the dose of regular medications through its antioxidant manifestations. Moreover the spices and herbs being used to design the formulations in this project are quite safe for human beings as they are frequently used in culinary. The concurrent use of these formulations could be highly effective in minimizing the adverse effects of the regular medicines used to treat certain NCDs as they may help to decrease the daily dose of the regular medications.
1.4 OBJECTIVES

1.4.1 General Objective

To evaluate the antioxidant profile of three different formulations of mixed spices and herbs mainly designed to be used as nutritional supplements for general health and wellbeing.

1.4.2 Specific Objectives

1. To determine the total phenolic contents (TPC) in the cold water, hot water and methanolic extracts of formulated spices and herbs.

2. To determine the total flavonoid contents (TFC) of cold water, hot water and methanolic extracts of formulated spices and herbs.

3. To determine the antioxidant activities of the formulated mixed spices and herbs.

4. To detect & quantify the probable phenolic acids (gallic acid) and flavonoids (catechin & quercetin) in the formulated spices and herbs.

5. To detect & quantify the essential minerals of nutritional importance in formulated spices and herbs.

1.5 HYPOTHESIS

The formulated spices and herbs are the rich source of antioxidants and they are capable to scavenge the free radicals to combat the oxidative stress.
CHAPTER TWO
LITERATURE REVIEW

2.1 SPICES AND HERBS
The study of the history of civilizations shows that in all the cultures spices and herbs are used traditionally not only for cooking purposes but also for the treatment of various ailments (Tapsell, 2008). A spice could be a part of the plant such as the dried seed, leave, fruit or bark that is primarily used to impart the flavor to the cooked food by masking the raw odor of constituents used for cooking as well as to preserve the food (Suhaj, 2006). On the other hand herbs are the leafy green plants (including the roots, fruit, bark and seeds) also used for flavoring and elegant presentation of food. In brief herb is a common abbreviation used for a herbaceous plant (Parekh and Chanda, 2007). Despite of a delicate difference between a spice and herb these terms are generally used together as synonyms of each other representing the parts of plants being used for medicinal or culinary purpose. In modern research spices and herbs have attained an utmost importance not due to their role in making the food delicious but more importantly due to their nutritional and health perspective. The medicinal importance of spices and herbs is mainly due to the phytochemicals termed as antioxidants (Hinneburg et al., 2006). The antioxidants found in spices and herbs are mainly the polyphenolic compounds such as the phenolic acids and the flavonoids (Padmanabhan and Jangle, 2012).
2.2 ANTIOXIDANTS

Any substance that has the ability to delay or slow down the oxidation of an oxidizable substrate is called antioxidant (Huang, Boxin and Prior, 2005). During metabolism various oxidation processes take place in the body which generates unstable entities commonly known as free radicals which are able to interact with cellular organelles causing cellular damage (Poyton, Ball and Castello, 2009). Non-communicable diseases for example diabetes, cancer and cardiovascular diseases (CVD) occur due to the oxidative damage of cellular components such as lipids, proteins and DNA (Milic et al., 2014). Antioxidants have the ability to stabilize these free radicals thus hindering their further multiplication (Houston, 2013). Due to this reason the discovery of food sources which can provide a considerable amount of antioxidants has become a subject of major interest for the nutritional scientists (Mayne, 2003).

2.3 CLASSIFICATION OF ANTIOXIDANTS

Antioxidants could be isolated from animal or plant sources or they could be synthesized artificially in laboratory. The antioxidants are mainly classified into two major groups that is the natural antioxidants and the synthetic antioxidants, the classification that is mainly based on the antioxidant source (Hamid, Aiyelaagbe, Usman, Ameen and Lawal, 2010).

2.3.1 Natural antioxidants

The natural antioxidants are further categorized into two major antioxidant systems that are enzymatic and the non – enzymatic antioxidant systems.
2.3.1.1 Enzymatic antioxidants

The enzymatic antioxidants occur endogenously (inside the body) and play an important role in cellular metabolic reactions by protecting the living cells from the toxic byproducts of cellular metabolism. The second group is the non-enzymatic antioxidants that occur exogenously (outside the body) mainly in edible plants and their dietary intake is highly important as the enzymatic antioxidants alone are insufficient to combat the oxidative stress generated by the free radicals (Rahman, 2007).

Superoxide dismutase (SOD), glutathione peroxidase and catalase are the most important enzymes occurring as endogenous antioxidants so as to maintain a metabolic equilibrium inside the human body. An imbalance of these naturally occurring endogenous antioxidants may cause severe oxidative damage which may lead to chronic diseases (Patil, Kodliwadmath and Kodliwadmath, 2007).

The SOD is a natural intracellular enzyme that dissociates the superoxide (O$_2^-$) radical into hydrogen peroxide and oxygen and it is a natural defense for all the cells at risk due to superoxide free radicals. The SOD is an enzyme which is effective with certain minerals namely zinc, copper, iron and manganese which act as its cofactor sequentially enhancing its efficiency against the superoxide radicals. Cu-SOD, Cu-Zn-SOD and Fe-SOD are some of the important enzyme – cofactor combinations of endogenous antioxidants naturally being deployed to fight against the most common and hazardous superoxide free radicals. In human beings SOD exists in three forms that is SOD1, SOD2 and SOD3 (Zelko, Mariani and Folz, 2002; Wang, Weaver, Zhang and Lei, 2011). The SOD1 is the most important natural enzymatic antioxidant against certain chronic diseases. The inactivation of SOD1 either due to genetic mutations or due to pathological manifestations may lead to serious motor neuronal