Publication:
Enhancement of egg signals classification by linear discriminant analysis for brain computer interface

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Kuala Lumpur : Kulliyyah of Engineering, International Islamic University Malaysia, 2022

Subject LCSH

Brain-computer interfaces
Electroencephalography

Subject ICSI

Call Number

t QP 360.7 A318E 2022

Research Projects

Organizational Units

Journal Issue

Abstract

Motor imagery (MI) based electroencephalogram (EEG) signals classification is under research for the last few decades to develop a robust and user-friendly brain-computer interface (BCI) system without compromising its simplicity and efficiency. The number of channel selections is still the most challenging task to extract features and classify them for MI movement detection. Hence, an advanced but required simple computation with minimal channels selection, Linear Discriminant Analysis (LDA) based algorithm has been developed. BCI competition IV dataset-I has been utilized in this research that was collected by the renowned BCI group from the Berlin Institute of Technology. Initially, the signal is preprocessed in a few steps by applying a sliding window and utilizing a finite impulse response (FIR) filter to obtain a cutoff frequency ranging from 8-30 Hz. The power spectral density (PSD) technique has been adopted to extract the power spectrum of µ and β features over frequency components. A common spatial pattern (CSP) filter is also applied to optimize feature extraction and feature selection from the signal. Then, classification has been done in two stages, training, and evaluation phase. Comparatively lower classification error has been recorded by the LDA classifier for left and right-hand MI classification. The classification accuracy is measured at 91.14% and 81.4% in the training and evaluation phase respectively. Cohen's kappa coefficient is calculated at 0.822 in the training phase and 0.629 in the evaluation phase which proves the research's viability. Therefore, to aid persons such as with spinal cord injuries, the suggested approach can be applied to real BCI devices.

Description

Keywords

Citation

Collections